The One That Got Away…

This is a guest post from Mo Beshr, an undergraduate student at TU Dublin who’ll soon be starting the final year of his Science with Nanotechnology degree. As part of his third year programme, Mo spent six months — from March until August — in our group. [Note to group: we really need to update our website.] Mo’s thoughts on his internship are below. The best of luck with your final year, Mo!


I knew from before even starting university that I wanted to pursue a career in research as it’s been a long-time dream of mine to make a difference in the world — what better way is there than being on the forefront of science discovering something new every day! All students in my course were given the opportunity to carry out their placement in Ireland or abroad through the Erasmus programme. It was always a goal of mine to travel abroad and experience what it would be like to live independently. So once my supervisor at TU Dublin approached me about placement opportunities, I made it clear to him that I was keen to travel abroad.

I was offered countless research opportunities in various universities across Europe such as Germany, Switzerland and France. I’m not much of a languages guy, however, so I thought I’d give living in Nottingham in England a go; sure, they’re our neighbours from across the pond. But if we’re going to be serious, I immediately jumped at the idea of carrying out my placement in the University of Nottingham as I knew a lot about it through watching Sixty Symbols, Numberphile, and Periodic Videos on YouTube, which are channels that include videos on various topics in science explained by staff members of the university. As well as that, I had known of the great work carried out by the Nanoscience Group at the University and I was very excited to see how all that I had studied as a Nanoscience undergrad was applied. Thankfully I was accepted to carry out my work placement in the University of Nottingham working directly with the Nanoscience Group under the supervision of Professor Philip Moriarty between March and August 2019.

My work was focused on the use of ultrahigh vacuum, low temperature ( 5 K and 77 K) scanning tunnelling microscopy (STM) for atomic resolution imaging of metal and semiconductor surfaces, spectroscopy and manipulation of single atoms and molecules. As you can imagine, going from being a goofy student who attended a handful of lectures everyday to being thrown into the big bad world of research was quite daunting. However, with some time and excellent help and advice by the PhD researchers I worked with and my supervisor I got into the swing of things quickly.

Initially, the toughest tasks were understanding how the STM system I would be using operated and how to analyse STM images and spectra. During my initial time in Nottingham I worked with a PhD researcher named Alex Allen on his project, which involved taking scanning tunnelling spectra (STS) of a C60/ Ag(100) sample using the Createc low temperature STM system. When I had first arrived, a sample of C60/Ag(100) had already been inside the Createc STM chamber and only ever removed for annealing and deposition purposes. During one of our weekly meetings, Phil noticed there were porphyrin contaminants on our sample and in order to fix this we had to remove the sample first from the STM and then from the ultrahigh vacuum chamber. While doing this we were, of course, always observing the movements of the STM tip using the live video from the camera. We then replaced the sample.

Once cleaning of the sample had been completed (by sputtering with ions and subsequent annealing), we would bring the sample back into the STM chamber and scan it in order to make sure it was clean and had an atomically flat surface; on the final sputter-anneal cycle, we achieved atomic resolution. Deposition of the desired molecules would then take place. The deposition process involved placing the sample over a crucible of C60. The crucible was then heated up with a high current which in turn sublimes the buckminsterfullerene molecules, thus allowing for the molecules to impinge on the surface of the sample. Once deposition was complete, we collected liquid nitrogen — following my health and safety induction — and then pumped it through the manipulator arm. This was done in order to cool the sample and control just how the fullerene molecules crystallised on the surface.

Finally, the sample was returned to the STM and scanning commenced once again. The  cryostat surrounding the STM was regularly filled with liquid nitrogen, which keeps the sample cooled throughout the scans…


In quite a few cases the scans were quite blurry or appeared smeared due to the STM tip being in a bad state. Sometimes the tip wasn’t atomically sharp and/or add more than one molecule on its apex, leading to multiple tunnelling current centres and thus “blurring” the image. In that case, a method known technically as, err, “crashing” was implemented — a clean area was found, and the tip was pushed into the surface to modify its apex. Once a tip had been “sharpened” and clear images were produced, we could carry out scanning tunnelling spectroscopy (STS) of the surface at any specific point. The tip would be positioned above a molecule. The bias was then varied, and the tunnelling current was recorded, giving a plot of the current-voltage characteristic for a single molecule. Differentiating the I(V) spectrum gives us information on the density of states of the molecules.

As well as gaining valuable experience in operating STM systems, I also obtained training in so-called “soft” skills. Literature review topics were assigned to me prior to carrying out any experimental work so I would have a better understanding of the topic of investigation. This involved me writing a report summarising the literature on that topic. The reviews were an excellent opportunity for me to improve my academic writing skills; with every review I could see improvement, and this prepared me very well for my end-of-placement report. After each literature review, I presented what I had found during group meetings, which was very intimidating as I had never given a presentation before! However, I improved with every presentation and the practice gave me great confidence when I returned to Ireland to present my work placement experience to my peers and lecturers.

Completing my work placement with the Nanoscience Group at Nottingham has let me  apply what I have learned in my three years as an undergraduate student and really opened my eyes to a future in research and academia. I now understand what it takes to be a researcher and I believe that I am now capable of pursuing my dream of becoming a researcher and hopefully to make a positive impact in the world of science. I hope this blog inspires other students like me to consider research as a future career path, as there is truly so much still out there to learn and find out. One tends to learn something new every day, and you realise that you are indeed on the frontline of science.

Molecules at Surfaces: What do we really know?


MatsI’m writing this on the Liverpool Lime Street to Norwich train1, heading back after attending an inspiring and entertaining symposium at the University of Liverpool over the past couple of days. As the title of this post suggests, the symposium had molecules at surfaces as its theme. More than that, however, it was a celebration of the work – and often, the life and times — of Prof. Mats Persson (pictured right), a formidably talented, influential, and yet humble and unimposing theorist who has played a leading role in shaping and defining the research fields in which I work: surface science, nanoscience, and, in particular, scanning probe microscopy. The words “A true gentleman” were repeated regularly through the symposium by Mats’ former PhD students researchers, postdocs, and co-workers, for very good reason.

Organised by George Darling, Matthew Dyer, Jackie Parkinson, and Rasmita Raval, the symposium was one of the best meetings I’ve attended not just recently but throughout my career to date. Ras, a leading light in the UK surface science community who has worked closely with Mats since he arrived in Liverpool in 2006 (and with whom I had the pleasure of collaborating on the Giants Of The Infinitesimal project2), kicked off the symposium with an engaging overview of not just surface science at Liverpool but of the city itself, including, of course, mention of the age-old rivalry between the two primary religious factions: the Reds and the Blues3.

What I particularly enjoyed about the meeting was the blend of world-leading science – an accolade that is often thrown around with wild abandon regardless of the quality of the work, but in this case its usage is absolutely justified —  with personal anecdotes about Mats’ career and those of his (very many) collaborators. It brought home to me yet again just how important social dynamics are to the evolution of science, no matter what howls of outrage this suggestion might provoke in certain quarters. Yes, of course, we do our utmost to be as rigorous, objective, and systematic in our research as possible – well, most of us – but the direction of a field is influenced not just by the science but by the “many-body interactions” of those who do the science. (For those interested in finding out more about the extent to which developments in science are influenced by the sociology of scientists, I thoroughly recommend Harry CollinsGravity’s Kiss; it’s that rarity among science and technology studies (STS) books: a page-turner. Harry is going to be visiting Nottingham in a couple of months to give an invited seminar for The Politics, Perception, and Philosophy of Physics module and I’ll post a lot more about his work then (including this fascinating “Spot The Physicist” experiment.))

A great example of just why the “who” can be as important as the “what” was this morning’s thoroughly entertaining retrospective from Stephen Holloway, erstwhile Head of Chemistry at Liverpool. Stephen covered not just his memories of working with Mats but included fascinating anecdotes about the political landscape, the interpersonal conflicts, and the “Big Names” who influenced the evolution of surface science through his career from the seventies onwards. I’ll spare Stephen’s (and others’) blushes by not revealing the names he mentioned, but his stories of scientists not quite being able to put personal grudges behind them when reviewing or assessing the work of their rivals/nemeses is just one aspect of where the personal and the professional are blurred. (This post from the popular blogger Neuroskeptic emphasises just how entwined these dual aspects can be.)

A running gag throughout the symposium was that many of those presenting owed their tenure/academic positions, either directly or indirectly, to working with Mats. And, indeed, the line-up of presenters read like a “Who’s Who?” of the most respected and influential groups in experimental and theoretical surface science/nanoscience today. Highlights are too many to mention but in addition to Stephen Holloway’s opening act this morning, I particularly enjoyed Wilson Ho’s compelling overview of his pioneering inelastic tunnelling spectroscopy work4 which opened the scientific symposium yesterday afternoon; Leonhard Grill’s always-fascinating insights into the reactions, switching and dynamics of single molecules at surfaces (the “ask Mats” image that opens this post is taken from Leonhard’s presentation);  Richard Palmer’s characteristically absorbing overview of his group’s STM and STEM research; Takashi Kumagi’s next-generation nanoplasmonics using sculpted probes…


…and Jascha Repp’s engrossing presentation of his group’s exceptionally impressive work on combining ultrafast optics with probe microscopy, enabling an unprecedented increase (by very, very many orders of magnitude) in the temporal resolution of the tunnelling microscope. This is Jascha presenting the working principle of the THz-STM:


…and one of the stand-out moments of the symposium for me was a video of the internal vibrational dynamics of a single adsorbed molecule, captured with ~ 100 femtosecond temporal resolution using the THz-STM technique. There is no question that the exciting results Jascha presented represent a truly ground-breaking step forward in our ability to probe matter at not just the sub-molecular but the sub-Angstrom scale — perhaps not quite as seismic as the Nobel-winning gravitational wave discovery but, nonetheless, an achievement that will certainly cause considerable ripples across the surface science, nanoscience, and scanning probe communities for many years to come.

Two other talks particularly piqued my interest, due to both the fascinating insights into single molecule behaviour and the alignment with my particular research interests right now. Cyrus Hirjibehedin – formerly of UCL and now at Lincoln Lab, MIT (Cyrus’ move back to the other side of the pond is a major loss to the UK scanning probe/nano/surface/magnetism communities) — gave a typically energetic and compelling presentation on his work on probing and tuning magnetic behaviour in phthalocyanine molecules, while Nicolas Lorente, who manages to combine razor-sharp scientific insights with razor-sharp wit in his presentations, discussed fascinating work on the Jahn-Teller effect (I’ll discuss this in a future post), again in phthalocyanine molecules. We are eagerly awaiting delivery and installation of a Unisoku high magnetic field STM/AFM, kindly funded by EPSRC, and so spin will be a major focus of our group’s research at Nottingham in the coming years. We’ve got such a lot of catching up to do…

Finally, it would be remiss of me to close this overlong post without mentioning a prevailing and exceptionally important theme throughout the symposium: the very close interplay between experiment and theory. Almost every speaker highlighted the “feedback loop” between experimental and theoretical data, but it was David Bird of the University of Bath whose — once again, thoroughly engaging — perspective hammered this point home time and again…


“Experiments Lead The Way”


“You learn more when theory doesn’t agree with experiment than when it does”, and…


“Simple models are best.”

This strong and very healthy experiment-theory interplay contrasts somewhat with other fields of physics, where sometimes experimental data seems to be almost an afterthought, at best, in the generation of new theories

A big thank-you to George, Matthew, Ras, and Jackie for organising such a great meeting. And, of course, enjoy your retirement, Mats!

A service that usually runs via Nottingham — cancellations, strikes, and acts of god/God/gods permitting — and with which I’m exceptionally familiar following very many fun, and occasionally somewhat gruelling, beamtime experiments at the now sadly defunct Daresbury Synchrotron Radiation Source. Daresbury is beside Warrington, which in turn is roughly midway between Liverpool and Manchester. I spent a lot of time (up to three months per year) at Daresbury in the late(-ish) nineties to early noughties, with very many hours whiled away sodden and/or freezing on the Warrington station platform, eyeing the announcement board and waiting for trains to collapse from a delayed-cancelled superposition into a more defined state…

2 Our friend and colleague Tom Grimsey, the powerhouse behind the Giants… project, sadly passed away almost five years ago. He was a wonderful man — full of enthusiasm for, and a hunger to learn about, all things nano, molecular, and atomic. I think that Ras would agree that Giants was such a fun project to work on because of the unique perspective Tom and Theo brought to our science. I couldn’t help but wonder a number of times during the symposium what Tom would have made of the incredible single molecule images presented during the talks.

3 Not being a football fan, I can’t comment further. (My dad was a lifelong Sunderland fanatic and my lack of interest in football may possibly not be entirely unrelated to this fact…)

4 …although I don’t quite yet share Wilson’s confidence in scanning probe microscopy’s ability to “see” intermolecular bonds.

Down On The Upside

I stumbled across the wonderful website last night (via Ken Rice‘s Twitter feed) and just had to quickly blog about this brilliant, at-a-glance rebuttal of that hoary old “The data don’t lie” aphorism. The graph speaks for itself…

 “But Philip, I thought you’d sworn off Twitter?” I have — I killed my Twitter account almost four years ago and have not once regretted it since. For one thing, a Twitter account is not required in order to read tweets and I occasionally dip into the Twitter threads of colleagues and friends I used to follow (Ken among them) via

La Tristesse Durera (Sigh To A Scream)*

Just a few short lines on today’s post from the always-worth-reading And Then There’s Physics… ATTP’s exasperation is clear from the title of his post: “Sigh. You should, of course, read the entire piece but the lines that particularly resonated with me, following my own recent cri de coeur on the subject of online factions, were these:

Unfortunately, I think this is becoming all too common. My impression is that we’re now in a position where people who probably mostly agree about the issues, are in conflict over details that probably don’t really matter.

I really do wish it were possible to have these nuanced discussions without it turning contentious; that it were possible to have a discussion where maybe people didn’t end agreeing, but still learned something.

sigh, indeed.

*With all due credit to Mr. James Dean Bradfield and colleagues.

Sloppy Science: Still Someone Else’s Problem?

“The Somebody Else’s Problem field is much simpler and more effective, and what’s more can be run for over a hundred years on a single torch battery… An SEP is something we can’t see, or don’t see, or our brain doesn’t let us see, because we think that it’s somebody else’s problem…. The brain just edits it out, it’s like a blind spot”.

Douglas Adams (1952 – 2001) Life, The Universe, and Everything

The very first blog post I wrote (back in March 2013), for the Institute of Physics’ now sadly defunct physicsfocus project, was titled “Are Flaws in Peer Review Someone Else’s Problem?” and cited the passage above from the incomparable, and sadly missed, Mr. Adams. The post described the trials and tribulations my colleagues and I were experiencing at the time in trying to critique some seriously sloppy science, on the subject of ostensibly “striped” nanoparticles, that had been published in very high profile journals by a very high profile group. Not that I suspected it at the time of writing the post, but that particular saga ended up dragging on and on, involving a litany of frustrations in our attempts to correct the scientific record.

I’ve been put in mind of the stripy saga, and that six-year-old post, for a number of reasons lately. First, the most recent stripe-related paper from the group whose work we critiqued makes absolutely no mention of the debate and controversy. It’s as if our criticism never existed; the issues we raised, and the surrounding controversy, are simply ignored by that group in their most recent work.

More importantly, however, I have been following Ken Rice‘s (and others’) heated exchange with the authors of a similarly fundamentally flawed paper very recently published in Scientific Reports [Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale, VV Zharkova, SJ Shepherd, SI Zharkov, and E Popova, Sci. Rep. 9 9197 (2019)]. Ken’s blog post on the matter is here, and the ever-expanding PubPeer thread (225 comments at the time of writing, and counting) is here. Michael Brown‘s take-no-prisoners take-down tweets on the matter are also worth reading…

The debate made it into the pages — sorry, pixels — of The Independent a few days ago: “Journal to investigate controversial study claiming global temperature rise is due to Earth moving closer to Sun.

Although the controversy in this case is related to physics happening on astronomically larger length scales than those at the heart of our stripy squabble, there are quite a number of parallels (and not just in terms of traffic to the PubPeer site and the tenor of the authors’ responses). Some of these are laid out in the following Tweet thread by Ken…

The Zharkova et al. paper makes fundamental errors that should never have passed through peer review. But then we all know that peer review is far from perfect. The question is what should happen to a paper that is not fradulent but still makes it to publication containing misleadingly sloppy and/or incorrect science? Should it remain in the scientific record? Or should it be retracted?

It turns out that this is a much more contested issue than it might appear at first blush. For what it’s worth, I am firmly of the opinion that a paper containing fundamental errors in the science and/or based on mistakes due to clearly definable f**k-ups/corner-cutting in experimental procedure should be retracted. End of story. It is unfair on other researchers — and, I would argue, blatantly unethical in many cases — to leave a paper in the literature that is fundamentally flawed. (Note that even retracted papers continue to accrue citations.) It is also a massive waste of taxpayers’ money to fund new research based on flawed work.

Here’s one example of what I mean, taken from personal, and embarrassing, experience. I screwed up the calibration of a tuning fork sensor used in a set of atomic force microscopy experiments. We discovered this screw-up after publication of the paper that was based on measurements with that particular sensor. Should that paper have remained in the literature? Absolutely not.

Some, however, including my friend and colleague Mike Merrifield, who is also Head of School here and with whom I enjoy the ever-so-occasional spat, have a slightly different take on the question of retractions:

Mike and I discussed the Zharkova et al. controversy both briefly at tea break and via an e-mail exchange last week, and it seems that there are distinct cultural differences between different sub-fields of physics when it comes to correcting the scientific record. I put the Gedankenexperiment described below to Mike and asked him whether we should retract the Gedankenpaper. The particular scenario outlined in the following stems from an exchange I had with Alessandro Strumia a few months back, and subsequently with a number of my particle physicist colleagues (both at Nottingham and elsewhere), re. the so-called 750 GeV anomaly at CERN…

“Mike, let’s say that some of us from the Nanoscience Group go to the Diamond Light Source to do a series of experiments. We acquire a set of X-ray absorption spectra that are rather noisy because, as ever, the experiment didn’t bloody well work until the last day of beamtime and we had to pack our measurements into the final few hours. Our signal-to-noise ratio is poor but we decide to not only interpret a bump in a spectrum as a true peak, but to develop a sophisticated (and perhaps even compelling) theory to explain that “peak”. We publish the paper in a prestigious journal, because the theory supporting our “peak” suggests the existence of an exciting new type of quasiparticle. 

We return to the synchrotron six months or a year later, repeat the experiment over and over but find no hint of the “peak” on which we based our (now reasonably well-cited) analysis. We realise that we had over-interpreted a statistical noise blip.

Should we retract the paper?”

I am firmly of the opinion that the paper should be retracted. After all, we could not reproduce our results when we did the experiment correctly. We didn’t bend over backwards in the initial experiment to convince ourselves that our data were robust and reliable and instead rushed to publish (because we were so eager to get a paper out of the beamtime.) So now we should eat humble pie for jumping the gun — the paper should be retracted and the scientific record should be corrected accordingly.

Mike, and others, were of a different opinion, however. They argued that the flawed paper should remain in the scientific literature, sometimes for the reasons to which Mike alludes in his tweet above [1].  In my conversations with particle physicists re. the 750 GeV anomaly, which arose from a similarly over-enthusiastically interpreted bump in a spectrum that turned out to be noise, there was a similarly strong inertia to correct the scientific record. There appeared to be a feeling that only if the data were fabricated or fraudulent should the paper be retracted.

During the e-mail exchanges with my particle physics colleagues, I was struck on more than one occasion by a disturbing disconnect between theory and experiment. (This is hardly the most original take on the particle physics field, I know. I’ll take a moment to plug Sabine Hossenfelder’s Lost In Math once again.) There was an unsettling (for me) feeling among some that it didn’t matter if experimental noise had been misinterpreted, as long as the paper led to some new theoretical insights. This, I’ll stress, was not an opinion universally held — some of my colleagues said they didn’t go anywhere near the 750 GeV excess because of the lack of strong experimental evidence. Others, however, were more than willing to enthusiastically over-interpret the 750 GeV “bump” and, unsurprisingly, baulked at the suggestion that their papers should be retracted or censured in any way. If their sloppy, credulous approach to accepting noise in lieu of experimental data had advanced the field, then what’s wrong with that? After all, we need intrepid pioneers who will cross the Pillars of Hercules

I’m a dyed-in-the-wool experimentalist; science should be driven by a strong and consistent feedback loop between experiment and theory. If a scientist mistakes experimental noise (or well-understood experimental artefacts) for valid data, or if they get fundamental physics wrong a la Zherkova et al, then there should be — must be — some censure for this. After all, we’d censure our undergrad students under similar circumstances, wouldn’t we? One student carries out an experiment for her final year project carefully and systematically, repeating measurements, bringing her signal-to-noise ratio down, putting in the hours to carefully refine and redefine the experimental protocols and procedures, refusing to make claims that are not entirely supported by the data. Another student instead gets over-excited when he sees a “signal” that chimes with his expectations, and instead of doing his utmost to make sure he’s not fooling himself, leaps to a new and exciting interpretation of the noisy data. Which student should receive the higher grade? Which student is the better scientist?

As that grand empiricist Francis Bacon put it centuries ago,

The understanding must not therefore be supplied with wings, but rather hung with weights, to keep it from leaping and flying.

It’s up to not just individual scientists but the scientific community as a whole to hang our collective understanding with weights. Sloppy science is not just someone else’s problem. It’s everyone’s problem.

[1] Mike’s suggestion in his tweet that the journal would like to retract the paper to spare their blushes doesn’t chime with our experience of journals’ reactions during the stripy saga. Retraction is the last thing they want because it impacts their brand.


“We don’t need no education…”

(…or Why It Sometimes Might Be Better For Us Academics to Shut The F**k Up Occasionally.)

Boost Public Engagement to Beat Pseudoscience, says Jim Al-Khalili” goes the headline on p.19 of this week’s Times Higher Education, my traditional Saturday teatime read. The brief article, a summary of points Jim made during his talk at the Young Universities Summit, continues…

Universities must provide more opportunities for academics to engage with the public or risk allowing pseudoscience to “fill the vacuum”, according to Jim Al-Khalili.

Prof. Al-Khalili is an exceptionally talented and wonderfully engaging science communicator. I enjoy, and very regularly recommend (to students and science enthusiasts of all stripes), his books and his TV programmes. But the idea that education and academic engagement are enough to counter pseudoscience is, at the very best, misleading and, at worst, a dangerous and counter-productive message to propagate.

The academic mantra of “education, education, education” as the unqualified panacea for every socioeconomic ill, although comforting, is almost always a much too simplistic — and, for some who don’t share our ideological leanings, irritatingly condescending — approach. I’ve written enthusiastically before about Tom Nichols’ powerful “The Death of Expertise”, and I’ve lost count of the number of times that I’ve referred to David McRaney’s The Backfire Effect in previous posts and articles I’ve written. It does no harm to quote McRaney one more time…

The last time you got into, or sat on the sidelines of, an argument online with someone who thought they knew all there was to know about health care reform, gun control, gay marriage, climate change, sex education, the drug war, Joss Whedon or whether or not 0.9999 repeated to infinity was equal to one – how did it go?

Did you teach the other party a valuable lesson? Did they thank you for edifying them on the intricacies of the issue after cursing their heretofore ignorance, doffing their virtual hat as they parted from the keyboard a better person?

Perhaps you’ve been more fortunate than McRaney (and me.) But somehow I doubt it.

As just one example from McRaney’s list, there is strong and consistent evidence that, in the U.S., Democrats are much more inclined to accept the evidence for anthropogenic climate change than Republicans. That’s bad enough, but the problem of political skew in motivated rejection of science is much broader. A very similar and very distinct right-left asymmetry exists across the board, as discussed in Lewandowsky and Oberauer’s influential paper, Motivated Rejection Of Science. I’ll quote from their abstract, where they make the same argument as McRaney but in rather more academic, though no less compelling, terms [1]:

Rejection of scientific findings is mostly driven by motivated cognition: People tend to reject findings that threaten their core beliefs or worldview. At present, rejection of scientific findings by the U.S. public is more prevalent on the political right than the left. Yet the cognitive mechanisms driving rejection of science, such as the superficial processing of evidence toward the desired interpretation, are found regardless of political orientation. General education and scientific literacy do not mitigate rejection of science but, rather, increase the polarization of opinions along partisan lines.

Let me repeat and bolden that last line for emphasis. It’s exceptionally important.

General education and scientific literacy do not mitigate rejection of science but, rather, increase the polarization of opinions along partisan lines.

If we blithely assume that the rejection of well-accepted scientific findings — and the potential subsequent descent into the cosy embrace of pseudoscience — is simply a matter of a lack of education and engagement, we fail to recognise the complex and multi-facetted sociology and psychology at play here. Yes, we academics need to get out there and talk about the research we and others do — and I’m rather keen on doing this myself (as discussed here, here, and here) — but let’s not make the mistake that there’s always a willing audience waiting with bated breath for the experts to come and correct them on what they’re getting wrong.

I spend a lot of time on public engagement, both online and off — although not, admittedly, as much as Jim — and I’ve encountered the “motivated rejection” effect time and time again over the years. Here’s just one example of what I mean — a comment posted under the most recent Computerphile video I did with Sean Riley:


The “zero credibility” comment stems not from the science presented in the video but from a reaction to my particular ideological and political leanings. For reasons I’ve discussed at length previously, I’ve been labelled as an “SJW” — a badge I’m happy to wear with quite some pride. (If you’ve not encountered the SJW perjorative previously, lucky you. Here’s a primer.) Because of my SJW leanings, the science I present, regardless of its accuracy (and level of supporting evidence/research), is immediately rejected by a subset of aggrieved individuals who do not share my political outlook. They outright dismiss the credibility or validity of the science not on the basis of the content or the strength of the data/evidence but solely on their ideological, emotional, and knee-jerk reaction to me…


(That screenshot above is taken from the comments section for this video.)

It’s worth noting that the small hardcore of viewers who regularly downvote and leave comments about the ostensible lack of credibility of the science I present are very often precisely those who would claim to be ever-so-rational and whose clarion call is “Facts over feels” [1]. Yet they are so opposed to my “SJW-ism” that they reject everything I say, on any topic, as untrustworthy; they cannot get beyond their gut-level emotional reaction to me.

My dedicated following of haters is a microcosm of the deep political polarisation we’re seeing online, with science caught in the slip-stream and accepted/rejected on the basis of how it appeals to a given worldview, rather than on the strength of the scientific evidence itself. (And it’s always fun to be told exactly how science works by those who have never carried out an experiment, published a paper, been a member of a peer-review panel, reviewed a grant etc.) This then begs the question: Am I, as a left-leaning academic with clearly diabolical SJW tendencies, in any position at all to educate this particular audience on any topic? Of course not. No matter how much scientific data and evidence I provide it will be dismissed out of hand because I am not of their tribe.[3]

Jim Al-Khalili’s argument at the Young Universities Summit that what’s required is ever-more education and academic engagement is, in essence, what sociologists and Science and Technology Studies (STS) experts would describe as the deficit model. The deficit model has been widely discredited because it simply does not accurately describe how we modify our views (or not) in the light of more information. (At the risk of making …And Then There’s Physics  scream, I encourage you to read their informative and entertaining posts on the theme of the deficit model.)

Prof. Al-Khalili is further reported as stating that “…to some extent, you do have to stand up and you do have to bang on about evidence and rationalism, because if we don’t, we will make the same mistakes of the past where the vacuum will be filled with people talking pseudoscience or nonsense.” 

Banging on about evidence and rationalism will have close to zero effect on ideologically opoosed audiences because they already see themselves as rational and driven by evidence [3]; they won’t admit to being biased and irrational because their bias is unconscious. And we are all guilty of succumbing to unconscious bias, to a greater or lesser extent. Force-feeding  more data and evidence to those with whom we disagree is not only unlikely to change their minds, it’s much more likely to entrench them further in their views. (McRaney, passim.)

Let me make a radical suggestion. What if we academics decided to engage rather less sometimes? After all, who is best placed to sway the position — on climate change, vaccination, healthcare, social welfare, or just about any topic — of a deeply anti-establishment Trump supporter who has fallen hook, line, and sinker for the “universities are hotbeds of cultural Marxism” meme? A liberal academic who can trot out chapter and verse from the literature, and present watertight quantitative (and qualitative) arguments ?

Of course not.

We need to connect, somehow, beyond the level of raw data and evidence. We need to appeal to that individual’s biases and psychology. And that means thinking more cannily, and more politically, about how we influence a community. Barking, or even gently reciting, facts and figures is not going to work. This is uncomfortable for any scientist, I know. But you don’t need to take my word for it — review the evidence for yourself.

The strength of the data used to support a scientific argument almost certainly won’t make a damn bit of difference when a worldview or ideology is challenged. And that’s not because our audience is uneducated. Nor are they unintelligent. They are behaving exactly as we do. They are protecting their worldview via the backfire effect.


[1] One might credibly argue that the rejection skew could lean the other way on certain topics such as the anti-vaccination debate, where anecdotal, and other, evidence might suggest that there is a stronger liberal/left bias. It turns out that even when it comes to anti-vaxxers, there is quite a considerable amount of data to support that it’s the right that has a higher degree of anti-science bias [2]. Here’s one key example: Trust In Scientists On Climate Change and Vaccines, LC Hamilton, J Hartter, and K Saito,  SAGE Open, July – Sept 2015, 1 – 13. See also Beyond Misinformation, S. Lewandowsky, U. K. H. Ecker, and J. Cook, J. Appl. Res. Memory. Cogn. 6 353 (2017) for a brief review of some of the more important literature on this topic.

[2] …but then it’s all lefty, liberal academics writing these papers, right? They would say that.

[3] Here’s an amusing recent example of numerological nonsense being passed off as scientific reasoning. Note that Peter Coles’ correspondent claims that the science is on his side. How persuasive do you think he’ll find Peter’s watertight, evidence-based reasoning to be? How should he be further persauded? Will more scientific evidence and data do the trick?


The Silent Poetry of Paint Drying

The painting has a life of its own. I just let it come through.

Jackson Pollock (1912 – 1956)

Over the last six weeks or so, I’ve had the immense pleasure of collaborating with local artist Lynda Jackson on a project for Creative Reactions — the arts-science offshoot of Pint of Science   I don’t quite know why I didn’t sign up for Creative Reactions long before now but after reading Mark Fromhold‘s wonderful blog post about last year’s event, I jumped at the chance to get involved with CR2019. The collaboration with Lynda culminated in us being interviewed together for yesterday’s Creative Reactions closing night, which was a heck of a lot of fun. The event, compered by PhD student researcher Paul Brett (Microbiology, University of Nottingham), was expertly live-tweeted by another UoN researcher (this time from the School of Chemistry), Lizzie Killalea

I’ve been fascinated by the physics (and metaphysics) of foam for a very long time, and was delighted that the collaboration with Lynda serendipitously ended up being focused on foam-like painting and patterns. When we met for the first time, Lynda told me that she had a burgeoning interest in what’s known as acrylic pouring, as described in this video…

…and here’s a great example of one of Lynda’s paintings, produced using a somewhat similar technique to that described in the video:


I love that painting, not only for its aesthetic value, but for its direct, and scientifically beautiful, connection to the foam patterns — or, to give them their slightly more technical name, cellular networks — that are prevalent right across nature, from the sub-microscopic to the (quite literally) astronomically large (via, as I discuss in the Sixty Symbols video below, the Giant’s Causeway and some stonkingly stoned spiders)…

Our research group spent a great deal of time (nearly a decade — see this paper for a review of some of that work) analysing the cellular networks that form when a droplet of a suspension of nanoparticles in a solvent is placed on a surface and subsequently left to its own devices (or alternatively spin-dried). Here’s a particularly striking example of the foams-within-foams-within-foams motif that is formed via the drying of a nanoparticle-laden droplet of toluene on silicon…


What you see in that atomic force microscope image above — which is approximately 0.02 of a millimetre, i.e. 20 micrometres, across — are not the individual 2 nanometre nanoparticles themselves, but the much larger (micron-scale) pattern that is formed during the drying of the droplet; the evaporation and dewetting of the solvent corrals the particles together into the patterns you see. It’s somewhat like what happens in the formation of a coffee stain: the particles are carried on the tide of the solvent (water for the coffee example; toluene in the case of the nanoparticles).

Lynda’s painting above is about 50 cm wide. That means that the scale of the foam created by acrylic pouring is ~ 25,000 times bigger than that of the nanoparticle pattern. Physicists get very excited when they see the same class of pattern cropping up in very different systems and/or on very different length scales — it often means that there’s an overarching mathematical framework; a very similar form of differential equation, for example, may well be underpinning the observations. And, indeed, there are similar physical processes at play in both the acrylic pouring and the nanoparticle systems: mixed phases separate under the influence of solvent flow. Here’s another striking example from Lynda’s work:


Phase separation and phase transitions are not only an exceptionally rich source of fascinating physics (and, indeed, chemistry and biology) but they almost invariably give rise to sets of intriguing and intricate patterns that have captivated both scientists and artists for centuries. In the not-too-distant future I’ll blog about Alan Turing’s remarkable insights into the pattern-forming processes that produce the spots, spirals, and stripes of animal hides (like those shown in the tweet below); his reaction-diffusion model is an exceptionally elegant example of truly original scientific thinking. I always hesitate to use the word “genius” — because science is so very much more complicated and collaborative than the tired cliche of the lone scientist “kicking against the odds” — but in Turing’s case the accolade is more than well-deserved.

I nicked the title of this post — well, almost nicked — from a quote generally attributed to Plutarch: “Painting is silent poetry, and poetry is painting that speaks.” It’s very encouraging indeed that Creative Reactions followed hot on the heels of the Science Rhymes event organised by my UoN colleague Gerardo Adesso a couple of weeks ago (see Brigitte Nerlich‘s great review for the Making Science Public blog). Could we at last be breaking down the barriers between those two cultures that CP Snow famously identified so many years ago?

At the very least, I get the feeling that there’s a great deal more going on than just a superficial painting over the cracks…