Politics. Perception. Philosophy. And Physics.

Today is the start of the new academic year at the University of Nottingham (UoN) and, as ever, it crept up on me and then leapt out with a fulsome “Gotcha”. Summer flies by so very quickly. I’ll be meeting my new 1st year tutees this afternoon to sort out when we’re going to have tutorials and, of course, to get to know them. One of the great things about the academic life is watching tutees progress over the course of their degree from that first “getting to know each other” meeting to when they graduate.

The UoN has introduced a considerable number of changes to the “student experience” of late via its Project Transform process. I’ve vented my spleen about this previously but it’s a subject to which I’ll be returning in the coming weeks because Transform says an awful lot about the state of modern universities.

For now, I’m preparing for a module entitled “The Politics, Perception and Philosophy of Physics” (F34PPP) that I run in the autumn semester. This is a somewhat untraditional physics module because, for one thing, it’s almost entirely devoid of mathematics. I thoroughly enjoy  F34PPP each year (despite this amathematical heresy) because of the engagement and enthusiasm of the students. The module is very much based on their contributions — I am more of a mediator than a lecturer.

STEM students are sometimes criticised (usually by Simon Jenkins) for having poorly developed communication skills. This is an especially irritating stereotype in the context of the PPP module, where I have been deeply impressed by the quality of the writing the students submit. As I discuss in the video below (an  overview of the module), I’m not alone in recognising this: articles submitted as F34PPP coursework have been published in Physics World, the flagship magazine of the Institute of Physics.

 

In the video I note that my intention is to upload a weekly video for each session of the module. I’m going to do my utmost to keep this promise and, moreover, to accompany each of those videos with a short(ish) blog post. (But, to cover my back, I’ll just note in advance that the best laid schemes gang aft agley…)

“If it doesn’t agree with experiment, it’s wrong. That’s all there is to it”

This a guest post from Jeremy Leaf, a third year PhD student in the School of Physics and Astronomy at the University of Nottingham and a member of the ENTHUSE project team.


 

It is one of our first electronics sessions. An Ethiopian teacher is learning how to use a multimeter and breadboard. Having measured the resistance of a number of discrete resistors using a multimeter, I suggest he try to measure them in series using the breadboard. He chooses two resistors and, on paper, calculates what the total resistance should be. He then carefully measures across both resistors in series. The teacher’s face lights up as he breaks into a wide smile. The theory is correct.

The process of learning a physical theory, and then observing it manifest itself in an experiment, is a vital pathway to understanding physics. It allows us to grasp difficult concepts and truly understand their nature. Unfortunately, in Ethiopia, physics education stops at the textbook. The education system has neither the funds nor expertise to employ physical experiments in their schools. Our assignment was to show how experimental physics could be taught using locally available materials. We also employed some more advanced apparatus, such as multimeters and breadboards, in the hope that they would be able to acquire these in time.

Simple apparatus and experimental concepts that we take for granted are often totally new to many physics teachers in Ethiopia.  This project was an exciting opportunity to make a small but meaningful impact on the futures of those who go to school here, as well as forge a link between our two countries. Education is key for this country to develop a generation of young Ethiopians that can think critically and creatively. I feel immensely privileged to have been a part of that process.

Science proves nothing

If you’re not a regular viewer of the BBC’s Sunday Morning Live — perhaps, like me, you’ve facepalmed your way through an episode before and sworn off it for life — you may have missed the following astounding revelation on this week’s programme:

I found out about this from Kash Farooq, of Nottingham Skeptics, in the middle of an e-mail exchange about the next Skeptics In The Pub event, at which Kash has very kindly invited me to speak. I’ve titled my talk “The Wow! and Woo of Quantum Physics” and I’m planning to spend a cathartic (for me, at least), and possibly somewhat vitriolic, forty minutes or so venting my spleen on the type of quantum quackpottery highlighted by the video above. (If you’d like to listen to the entire Sunday Morning Live discussion it’s available (for now) via the BBC iPlayer. It’s worth it for Steve Jones‘ contributions.).

In what could be an holistic, quantum-entangled correlation spanning universal spacetime — or just possibly a coincidence — I was also contacted very recently by the dynamic duo of Tim Brownson and Olivier Larvor to ask whether I could talk about quantum woo for their Raw Voices podcast. (They’d watched this Sixty Symbols video from a couple of years back,  yet, despite that very far from polished performance, still invited me on). That’s going to happen this Friday and after the podcast I’ll write a post dedicated to the utter lunacy that is quantum life coaching.

Yes, you read that right. Quantum. Life. Coaching. Here’s one example. And another. And this was especially irritating.

(For those of you who are familiar with So Long And Thanks For All The Fish and/or the Quandary Phase of H2G2, the fact that quantum life coaching is a thing could very well be my Wonko The Sane moment…)

For now, however, it’s the idea that science proves anything, let alone the existence of an afterlife, that I’d like to briefly address. The net is awash with assertions that science has proved (or disproved) just about everything from the (non-)existence of a god to the fact that exercise is poisonous [1]. Comments threads erupt into flame wars on the basis that “It’s been scientifically proven that…”. I’ve also had my fair share of scientific papers to review where the authors have claimed that their experimental results “definitively prove” that their theoretical model is correct.

But science proves nothing. All scientific results are provisional and tentative; science progresses via a succession of ever-better guesses/explanations. As we get more and more evidence for a particular explanation then our confidence in that model grows accordingly. Science, however, is not mathematics: there are no proofs. (And even in maths, there are different classes of proof…)

I discuss this distinction between deductive and inductive reasoning as part of the Politics, Perception, and Philosophy of Physics module here at Nottingham [2] and refer the students to this important and provocative article by Carlo Rovelli: Science Is Not About Certainty. I’ll quote Rovelli at length because he really hammers home the key point.

The very expression “scientifically proven” is a contradiction in terms. There’s nothing that is scientifically proven. The core of science is the deep awareness that we have wrong ideas, we have prejudices.

…we have a vision of reality that is effective, it’s good, it’s the best we have found so far. It’s the most credible we have found so far; it’s mostly correct.

Science is a continual challenging of common sense, and the core of science is not certainty, it’s continual uncertainty—I would even say, the joy of being aware that in everything we think, there are probably still an enormous amount of prejudices and mistakes, and trying to learn to look a little bit beyond, knowing that there’s always a larger point of view to be expected in the future.    

Edit 09:48, 19 August 2015 — This great article by Geraint Lewis, Professor of Astrophysics at the University of Sydney, on the same subject was brought to my attention via Twitter: Where’s the proof in science? There is none.

1. This, of course, needs no scientific study. It’s a self-evident truth.
2. I’m gearing up to update this for the upcoming academic year and am planning a series of blog posts and videos on the themes in the module.